Toric Varieties Chapters 8 – 11 David Cox
نویسندگان
چکیده
منابع مشابه
Minicourse on Toric Varieties
1. Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Characters and 1-Parameter Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3. Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملUniversal Rational Parametrizations and Toric Varieties
This note proves the existence of universal rational parametrizations. The description involves homogeneous coordinates on a toric variety coming from a lattice polytope. We first describe how smooth toric varieties lead to universal rational parametrizations of certain projective varieties. We give numerous examples and then discuss what happens in the singular case. We also describe rational ...
متن کاملMirror Symmetry and Cluster Varieties
2 Toric Varieties 7 2.1 Constructing an atlas for a toric variety from a fan . . . . . . . . . . . . . . . . . . . . 7 2.2 Cones correspond to torus orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Maps of fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملLagrangian torus fibration and mirror symmetry of Calabi-Yau hypersurface in toric variety
2 Background in toric geometry 8 2.1 Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Toric varieties associated with a reflexive polyhedron . . . . . . . 10 2.3 Subtoric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Singularities of a simplicial toric variety . . . . . . . . . . . . . . 12 2.5 Toric action of a torus on a toric variety . ...
متن کامل2 5 Ja n 20 08 COX RINGS AND COMBINATORICS II
We study varieties with a finitely generated Cox ring. In a first part, we generalize a combinatorial approach developed in earlier work for varieties with a torsion free divisor class group to the case of torsion. Then we turn to modifications, e.g., blow ups, and the question how the Cox ring changes under such maps. We answer this question for a certain class of modifications induced from mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010